Blues
for NO

An Al-bot playing the
whisper game with itself.

Jonas Sjovaag
University of Agder

I have built a bot that exists within a digital space. It
was created to highlight errors in digital systems and to
demonstrate the outcomes of such errors when they are
interpreted anew, without conscious thought attached to
them.

It currently utilizes speech-to-text (STT) and text-to-speech
(TTS) technologies, one provided by ElevenLabs and the
other by Google. Sometimes, I only use Google’s STT because
the default voice is completely free, which inadvertently
points to another significant problem when dealing with
technology: the best version comes at a cost.

Inthisbot,andin similarinitiatives,thetechnicallimitations
described can be embraced as a method because simpler
systems tend to reveal errors more readily. After all, errors
are often what prompt humans to reflect. In a research
setting, this 1s often desirable, and for artists, flaws and
errors often serve as inspiration. I'm convinced that much of
what we consider great art actually stems from attempts to
rectify anidea that didn’t initially work, or from abandoning
the original 1dea in favor of a different approach.

For me, the bot started as a fun project but quickly proved
useful in other contexts. I have created a piece for this
poster presentation, closely echoing the theme in Alvin
Lucier’s “I am sitting in a room”, and had the bot perform
a five-minute piece at the Artistic Research Forum in Oslo,
in March 2024. Currently, it only deals with textual output,
but I'm considering expanding its functionality in one way
or another. I could have spectral information extracted from
audio, as a separate function in the script, or something
along those lines, to get data that in turn can be used to
trigger generative audio from SuperCollider, for instance,
or be applied in other contexts.

The bot lives and expands, but it does so solely because of

my 1deas. This is probably the most poignant insight to be
drawn from this experience. It is also very relatable.

Performance 1: in Rome
Performance 2: blues for No

import os

import re

import glob

import librosa

import numpy as np

import soundfile as sf

import sounddevice as sd

import speech_recognition as speech_recog

def

def

def

def

def

def

find_newest_audio_file(source_folder, file_extension='"x.mp3"):
list_of_files = glob.glob(f'{source_folder}/{file_extension}')
if not list of files:

return None
latest_file = max(list_of_files, key=o0s.path.getmtime)
return latest_file

normalize_audio(audio_data, target_dBFS=-5):

rms_current = np.sqrt(np.mean(audio_data**2))

dBFS_current = 20 * np.logl@(rms_current)

target_amplitude = 10 *x ((target_dBFS - dBFS_current) / 20) -
audio_normalized = audio_data * (target_amplitude / rms_currer
return audio_normalized

process_audio(file_path, folder="whispers'):
y, sr = librosa. load(file_path, sr=None)
y_normalized = normalize_audio(y, target_dBFS=-5)

Playback the normalized audio
sd.play(y_normalized, sr)
sd.wait() # Wait until the playback has finished

Ensure the whispers d#rectnry ex1ists

os.makedirs(folder, exist ok=True)

output_path = os.path.join(folder, f"whisper_ {len(os.listdir(1
sf.write(output_path, y_normalized, sr)

return output_path

find_next_seq_num_text_output(folder, pattern="output_x.txt"):
os.makedirs(folder, exist ok=True) # Ensure the folder exists
files = glob.glob(os.path.join(folder, pattern))
highest_num = @
for f in files:
match = re.search(r'output_(\d+).txt', f)
if match: # Check if the search found a match
num = int(match.group(1))
if num > highest_num:
highest_num = num
return highest_num + 1

remove words(text, num words=4):

Remove num _words words from the end of the text.

words = text.split()
if len(words) >= num_words:

return ' '.join(words[:-num_words])
else:

return '’

recognize_speech_from_audio(audio_file_path):

recognizer = speech_recog.Recognizer()

with speech_recog.AudioFile(audio_file_path) as source:
audio_data = recognizer.record(source)

try:
text = recognizer.recognize sphinx(audio_data)
text_output_folder = "text_output”
next_num = find_next_seq_num_text_ output(text_output_f
output_filename = os.path.join(text_output_folder, f'ol

Directly use the recognized text without limiting 1t
full_text = text # Use the full recognized text

Check for existing text and remove words 1f needed
if os.path.exists(output_filename):
with open(output_filename, "r'") as file:
existing_text = file.read()
full_text = remove words(existing_text)

with open(output_filename, "w'") as file:
file.write(full_text + "\n")
print(f"Transcribed text saved as {output_filename}")
except speech_recog.UnknownValueError:
print("Sphinx could not understand audio")
except speech_recog.RequestError as e:
print(f"Could not request results from Sphinx; {el}")

